Irvuz

Формы памяти

Эффекты памяти формы: материалы и механизм действия. Возможности применения

Формы памяти

Согласно общепринятому мнению, металлы – наиболее прочные и устойчивые материалы. Однако существуют такие сплавы, которые могут после деформации восстанавливать свою форму без приложения внешней нагрузки. Для них характерны и другие уникальные физико-механические свойства, выделяющие их среди конструкционных материалов.

Сущность явления

Эффект памяти формы у сплавов заключается в том, что предварительно деформированный металл самопроизвольно восстанавливается в результате нагрева или просто после снятия нагрузки.

Эти необычные свойства были замечены учеными еще в 50-е гг. XX в.

Уже тогда данное явление было связано с мартенситными превращениями в кристаллической решетке, при которых происходит упорядоченное перемещение атомов.

Мартенсит в материалах с эффектом памяти формы является термоупругим. Эта структура состоит из кристаллов в виде тонких пластин, которые вытягиваются в наружных слоях, а во внутренних – сжимаются.

«Носителями» деформации являются межфазные, двойниковые и межкристаллитные границы. После нагрева деформированного сплава появляются внутренние напряжения, пытающиеся вернуть металл в начальную форму.

Характер самопроизвольного восстановления зависит от механизма предшествующего воздействия и температурных условий, при которых оно протекало. Наибольший интерес представляет собой многократная цикличность, которая может составлять несколько миллионов деформаций.

Металлы и сплавы с эффектом памяти формы обладают и другим уникальным свойством – нелинейной зависимостью физических и механических характеристик материала от температуры.

Разновидности

Вышеописанный процесс может проявляться в нескольких формах:

  • сверхпластичность (сверхупругость), при которой кристаллическая структура металла выдерживает деформации, значительно превышающие предел текучести в обычном состоянии;
  • однократная и обратимая память формы (в последнем случае эффект неоднократно воспроизводится при термоциклировании);
  • пластичность прямого и обратного превращения (накопление деформации во время охлаждения и нагрева, соответственно, при прохождении через мартенситное превращение);
  • реверсивная память: при нагревании сначала происходит восстановление одной деформации, а затем, при дальнейшем увеличении температуры, – другой;
  • ориентированное превращение (накопление деформаций после устранения нагрузки);
  • псевдоупругость – восстановление неупругих деформаций от значений упругих в диапазоне 1-30 %.

Возврат к исходному состоянию у металлов с эффектом памяти формы может происходить настолько интенсивно, что его не удается подавить усилием, близким к пределу прочности.

Среди сплавов, обладающих такими свойствами, наиболее распространены титано-никелевые (49– 57 % Ni и 38–50 % Ti). Они обладают хорошими эксплуатационными характеристиками:

  • высокая прочность и сопротивляемость к разрушению коррозией;
  • значительный коэффициент восстановления формы;
  • большое значение внутреннего напряжения при возврате в начальное состояние (до 800 МПа);
  • хорошая совместимость с биологическими структурами;
  • эффективное поглощение вибраций.

Кроме никелида титана (или нитинола) применяются и другие сплавы:

  • двухкомпонентные – Ag-Cd, Au-Cd, Cu-Sn, Cu-Zn, In-Ni, Ni-Al, Fe-Pt, Mn-Cu;
  • трехкомпонентные – Cu-Al-Ni, CuZn-Si, CuZn-Al, TiNi-Fe, TiNi-Cu, TiNi-Nb, TiNi-Au, TiNi-Pd, TiNi-Pt, Fe-Mn-Si и другие.

Легирующие добавки могут сильно смещать температуру мартенситных превращений, влияя на свойства восстановления.

Использование в промышленности

Применение эффекта памяти формы позволяет решать многие технические задачи:

  • создание герметичных трубных узлов аналогично методу развальцовки (фланцевые соединения, самозатягивающиеся обоймы и муфты);
  • изготовление зажимных инструментов, захватов, толкателей;
  • проектирование «суперпружин» и аккумуляторов механической энергии, шаговых двигателей;
  • создание соединений из разнородных материалов (металл-неметалл) или в труднодоступных местах, когда применение сварки или пайки становится невозможным;
  • изготовление силовых элементов многоразового действия;
  • корпусная герметизация микросхем, гнезда для их присоединения;
  • производство регуляторов и датчиков температуры в различных приборах (пожарная сигнализация, предохранители, клапаны тепловых машин и другие).

Большие перспективы имеет создание подобных аппаратов для космической промышленности (саморазворачивающиеся антенны и солнечные батареи, телескопические устройства, инструмент для монтажных работ в открытом космосе, приводы поворотных механизмов – рулей, заслонок, люков, манипуляторов). Их преимуществом является отсутствие импульсных нагрузок, которые вносят нарушения в пространственное положение в космосе.

Применение сплавов с эффектом памяти формы в медицине

В медицинском материаловедении металлы с данными свойствами используются для изготовления таких технологических устройств, как:

  • шаговые двигатели для вытяжения костей, выпрямления позвоночника;
  • фильтры для кровезаменителей;
  • приспособления для фиксации переломов;
  • ортопедические аппараты;
  • зажимы для вен и артерий;
  • детали насосов для искусственного сердца или почки;
  • стенты и эндопротезы для имплантации в кровеносных сосудах;
  • ортодонтические дуги для коррекции зубного ряда.

Недостатки и перспективы

Несмотря на широкие возможности, сплавы с эффектом памяти формы имеют недостатки, которые ограничивают их широкое внедрение:

  • дорогостоящие компоненты химического состава;
  • сложная технология изготовления, необходимость использования вакуумного оборудования (чтобы избежать включения примесей азота и кислорода);
  • фазовая нестабильность;
  • низкая обрабатываемость металлов резанием;
  • трудности в точном моделировании поведения конструкций и изготовлении сплавов с заданными характеристиками;
  • старение, усталость и деградация сплавов.

Перспективным направлением в развитии этой области технологий является создание покрытий из металлов, обладающих эффектом памяти формы, а также изготовление таких сплавов на основе железа. Композитные структуры позволят объединить в одном техническом решении свойства двух и более материалов.

Источник: https://FB.ru/article/424073/effektyi-pamyati-formyi-materialyi-i-mehanizm-deystviya-vozmojnosti-primeneniya

Металлы с памятью формы

Формы памяти

Существует ряд металлических материалов (металлических сплавов), способных возвращать себе исходную форму после предварительной деформации – т.н. металлы с памятью формы.

Описание

Механизм реализации эффекта памяти формы

Никелид титана

Описание:

Одно из базовых восприятий людьми явлений внешнего мира — это стойкость и надежность металлических изделий и конструкций, стабильно сохраняющих свою функциональную форму продолжительное время, если, конечно, они не подвергаются закритическим воздействиям. Однако существует ряд металлических материалов (металлических сплавов), способных возвращать себе исходную форму после предварительной деформации – т.н. металлы с памятью формы.

Эффект памяти формы – явление возврата к первоначальной форме при нагреве, которое наблюдается у некоторых металлических материалов после предварительной деформации.

Чтобы понять эффект памяти формы, достаточно один раз увидеть его проявление:

1. Есть металлическая проволока;

2. Эту проволоку изгибают;

3. Начинаем нагревать проволоку;

4. При нагреве проволока распрямляется, восстанавливая свою исходную форму.

Эффект памяти формы зависит от марки сплава со строго выдержанным химическим составом. От этого зависит температура мартенситных превращений. Эффект памяти формы проявляется только при термоупругих мартенситных превращениях и может проявляться несколько миллионов циклов.

Эффект памяти формы сплава можно усиливать предварительными термообработками. Возможны реверсивные эффекты памяти формы, когда металл с памятью формы при одной температуре «вспоминает» одну форму, а при другой температуре — другую.

Памятью формы в разной степени обладают следующие металлы и их сплавы: Ni – Ti, Ni – Al, Ni – Co; Ti – Nb; Au – Cd; Fe – Ni, Fe – Mn – Si; Cu – Al, Cu – Mn, Cu – Al – Ni, Cu – Zn – Al  и др.

Fe – Mn – Si – наиболее дешевый сплав.

Механизм реализации эффекта памяти формы:

1. В исходном состоянии в материале существует определенная структура (на рисунке обозначена правильными квадратами).

2. При деформации внешние слои материала вытягиваются, а внутренние сжимаются. В материалах с памятью формы мартенсит является термоупругим.

3. При нагреве начинает проявляться термоупругость мартенситных пластин,  то есть в них возникают внутренние напряжения,  которые стремятся вернуть структуру в исходное состояние.

4. Поскольку внешние вытянутые пластины сжимаются, а внутренние сплюснутые растягиваются, материал в целом проводит автодеформацию в обратную сторону и восстанавливает свою исходную структуру, а вместе с ней и форму.

В процессе проявления эффекта памяти формы участвуют прямые и обратные мартенситные превращения. Мартенситное превращение ‐ полиморфное превращение, при котором изменение взаимного расположения составляющих кристалл атомов происходит путём их упорядоченного перемещения, причем относительные смещения соседних атомов малы по сравнению с межатомным расстоянием.

Под прямым мартенситным превращением понимают превращение из высокотемпературной гранецентрированной кубической фазы (аустенит) в низкотемпературную объемно‐центрированную кубическую фазу (α‐ мартенсит). Обратное превращение – из объемно‐центрированной кубической фазы в гранецентрированную кубическую.

Никелид титана – лидером среди материалов с памятью формы по применению и по изученности.

Никелид титана — это интерметаллид эквиатомного состава с 55 мас. % Ni. Температура плавления 1240-1310˚C, плотность 6,45 г/см3. Исходная структура никелида титана стабильная объемно‐центрированная кубическая решетка при деформации претерпевает термоупругое мартенситное превращение.

Никелид титана обладает:

превосходной коррозионной стойкостью,

высокой прочностью,

хорошими характеристиками формозапоминания,

хорошей совместимостью с живыми организмами,

высокой демпфирующей (поглощением шума и вибрации) способностью материала.

карта сайта

контроль методом магнитной памяти металла
магнитная память металла приборы
металл с памятью формы соединение видео купить на очки как называется
металл с эффектом памяти
металл имеющий память
металл обладающий памятью
дубов метод магнитной памяти металла и приборы контроля неразрушающий контроль
отчет по магнитной памяти металла
память металла видео опыт
физические основы метода магнитной памяти металла скачать
эффект памяти металлов в литейном производстве
эффект памяти формы металлов

by HyperComments

Источник: https://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/metally-s-pamyatyu-formy/

ovdmitjb

Add comment